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Abstract

In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a

network sends all of its traffic down the path that will incur the lowest cost to that

traffic. In the limit of an infinitesimally small amount of traffic for a particular

router, its routing that traffic via an ISPA is optimal, as far as cost incurred by

that traffic is concerned. We demonstrate though that in many cases, due to the

side-effects of one router's actions on another touters performance, having touters

use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only

used to route infinitesimally small amounts of traffic. As a particular example of this

we present an instance of Braess' paradox for ISPA's, in which adding new links to

a network decreases overall throughput. We also demonstrate that load-balancing,

in which the routing decisions are made to optimize the global cost incurred by all

traffic currently being routed, is suboptimal as far as global cost averaged across

time is concerned. This is also due to "side-effects", in this case of current routing

decision on future traffic. The theory of COllective INtelligence (COIN) is concerned

precisely with the issue of avoiding such deleterious side-effects. We present key

concepts from that theory and use them to derive an idealized algorithm whose

performance is better than that of the ISPA, even in the infinitesimal limit. We

present experiments verifying this, and also showing that a machine-learning-based

version of this COIN algorithm in which costs are only imprecisely estimated (a

version potentially applicable in the real world) also outperforms the ISPA, despite

having access to less information than does the ISPA. In particular, this COIN

algorithm avoids Braess' paradox.

1 INTRODUCTION

The problem of how to control routing across a network underlies a vast array of real-

world problems including internet routing, voice/video communication, traffic flows, etc.

In its general form, the problem is how to optimize the flow of certain entities (e.g.,



informationpackets,cars)fromsourcesto destinationsacrossa networkof routingnodes.
Hereweareconcernedwith theversionof theproblemin which"optimization"consists
of minimizingaggregatecostincurredby the entitiesflowingto their destinations.To
groundthe discussion,we will considerthe casewherethe entities being routed are
packets.

Currently,manyreal-worldnetworkrouting solutionsto this particularproblemare
basedon theShortestPathAlgorithm (SPA),in whicheachroutingnodein thenetwork
maintainsestimatesof the "shortestpaths" (i.e.,minimal total incurredcosts)from it
to eachof its destinationsandat eachmomentsatisfiesany routingrequestsby sending
all its packetsdownthat shortestpath. Manyalgorithmsexist for efficientlycomputing
the shortestpath in the casewherethe costsfor traversingeachcomponentof every
path at any given time areknown. In particular, thereexist manysuchalgorithms
that can be appliedwhennode-to-nodepath-costcommunicationis availableand the
costsfor traversingeachcomponentareunvaryingin time (e.g.,Dijkstra's Algorithm
[1,3, 9, 10]. Real-worldSPA'sapplysuchalgorithmsto estimatedcostsfor traversing
eachcomponentof everypath to generatetheir estimatedshortestpaths.

Consider the case where for all paths from a particular node to a particular destina-

tion, the costs that would be incurred by that node's routing all its current traffic along

that path is known exactly to that node (the information being stored in that router's

"routing table"). Clearly if a non-infinitesimal amount of traffic is being routed by our

node, then in general its sending all that traffic down a single path will not result in

minimal cost incurred by that traffic, no matter how that single path is chosen. However

if it must choose a single path for all its traffic, then tautologically the SPA chooses the

best such path. Accordingly, in the limit of routing an infinitesimally small amount of

traffic, with all other nodes' strategies being a "background", such a router's running

SPA is the optimal (least aggregate incurred cost) routing strategy for that particular

routing node considered individually.

One might hope that more generally, if the node must allot all of its traffic to a single

path, then its choosing that path via the SPA would be the globally optimal choice

of a single path, at least in the limit of infinitesimally little traffic. This is not the

case though, because in using the SPA the node is not concerned with the deleterious

side-effects of its actions on the costs to other nodes [15, 26]. In the extreme case, as

elaborated below, if all nodes were to try to minimize their personal costs via SPA's,

then the nodes would actually all receive higher cost than would be the case under an

alternative set of strategies. This is an instance of the famous Tragedy Of the Commons

(TOC) [12].

Deleterious side-effects need not be restricted to extend over space; they can also

extend over time. Indeed, consider the algorithm of having all routers at a given moment

make routing decisions that optimize global cost incurred by the traffic currently being

routed, an algorithm often called "load-balancing" (LB). By definition, LB avoids the



deleteriousside-effectsoverspacethat canresultin theTOCfor the costsincurredbythe
traffic currentlybeingrouted.However,dueto side-effectsovertime, evenconventional
LB isoftensuboptimalasfar asglobalcostaveragedacrosstime isconcerned.Intuitively,
onewouldhaveto use"load-balancingovertime" to ensuretruly optimal performance.

In this paperweareconcernedwith how to addressthesekinds of deleteriousside-
effects,and therebyimproveperformance.In particular,we are interestedin waysof
doingthis that resultin better performancethan that of the ubiquitousSPA.

Now useof the SPAobviouslyprovidesno guarantees,evenfor personalcostof the
routerusingit, if the path-estimatesof the nodesare incorrect.Suchinaccuracyis the
rule rather than the exception in many practical applications. Typically those estimates

will be in error because node-to-node communication is not instantaneous, and therefore

routing tables may be based on out of date information. More generally though, even if

that communication were instantaneous, the cost to traverse a component of the network

may be different by the time the packet arrives at that component.

In this paper we do not wish to investigate such topics, but rather to highlight the

issue of side-effects. Accordingly we "rig the game" in favor of the SPA by constructing

our simulations so that the first potential cause of routing table inaccuracy does not arise,

and the second is minimized. We do this in our experiments by using an Ideal Shortest

Path Algorithm (ISPA) which has direct access to the shortest path at each moment.

Note that this ISPA provides an upper bound on the performance of any real-world SPA.

In general, even without side-effects, determining the optimal solution to a flow prob-

lem (e.g., determining what the loads on each link need to be to maximize throughput

on a non-cooperative data network) can be nontractable [1, 20]. Therefore, we will con-

cern ourselves with providing good solutions that avoid the difficulties the ISPA has with

side-effects. It is not our aim here to present algorithms that find the best possible

("load-balanced over time") solution.

We will base our solutions on the concept of Collective Intelligence. A "COllec-

tive INtelligence" (COIN) is any pair of a large, distributed collection of interacting

goal-driven computational processes among which there is little to no centralized com-

munication or control, together with a 'world utility' function that rates the possible

dynamic histories of the collection [26, 25]. In this paper we are particularly concerned

with computational processes that use machine learning techniques (e.g., reinforcement

learning [14, 23, 22, 24]) to try to achieve their goal, conventionally represented as max-

imizing an associated utility function. We consider the central COIN design problem:

How, without any detailed modeling of the overall system, can one set utility functions for

the individual components in a COIN to have the overall dynamics reliably and robustly

achieve large values of the provided world utility? In other words, how can we leverage

an assumption that our learners are individually fairly good at what they do? In a

routing context, this question reduces to what goals one ought to provide to each router

so that each router's greedily pursuing those goals will maximize throughput ("incentive



engineering").Forreasonsgivenabove,weknowthat the answerto thisquestionis not
providedbySPA'sgoals-- somenewsetof goalsis needed.

In Section2 wediscussthe SPA'sdeficienciesand in particular their manifestations
in Braess'paradox. We alsodemonstratethe suboptimalityof load-balancingin that
section.WethenpresentCollective Intelligence in Section 3, discuss the routing model

we will use in our experiments, and show how the theory of COINs can be applied

to that model to provide an alternative to shortest path algorithms. In Section 4 we

present simulation results with that model that demonstrate that in networks running

ISPA, the per packet costs can be as much as 32 % higher than in networks running

algorithms based on COIN theory. In particular, even though it only has access to

imprecise estimates of costs (a handicap that does not hold for ISPA), the COIN-based

algorithm almost always avoids Braess' paradox, in stark contrast to the ISPA. In that

the cost incurred with ISPA's is presumably a lower bound on that of an SPA not privy

to instantaneous communication, the implication is that COINs can outperform such

real-world SPA's. 1

2 Suboptimality of Shortest Path and Load-Balancing

In this section we first demonstrate the suboptimality of an SPA when we have multiple

nodes making simultaneous routing decisions, where neither node knows ahead of time

the other's choice, and therefore does not know ahead of time exactly what the costs will

be. We then demonstrate that such suboptimMity can hold even when only one node is

making a decision, and it knows what decisions the others have previously made. Next we

present Braess' paradox, a particularly pointed instance of these effects. (See [2, 7, 6, 18]

for other discussion of Braess' paradox in SPA routing.) We end by demonstrating the

suboptimality of conventional load-balancing when cost over time is what's of interest.

2.1 SPA when multiple routers are simultaneously making decisions

Perhaps the simplest example of how individual greed on the part of all nodes can lead

to their collective detriment occurs when two nodes determine that their shortest path

is through a shared link with a limited capacity, while both have a second option that

is slightly less preferable. In such a case, their using the common link degrades the

performance of both parties, since due to limited capacity the performance of that link

will quickly fall below that of their second option.

More precisely, consider the case where, given a load x, the shared link has a cost

given by x 3, and where each router has a second option where the cost is given by 2x.

Acting alone, with a single packet to send, they would both send that packet through

1A brief synopsis of the COIN algorithm discussed here was presented in a space-constrained article

[26]; this paper presents full details and applies the algorithm to Braess' paradox as an illustration of

the suboptimality of the SPA.



packets, use of SPA will lead to a wrong routing decision.

2.2 SPA when only one router is making a decision

Consider the network shown in Figure 1. Two source routers X and Y each send one

packet at a time, with X sending to either intermediate router A or B, and Y sending

to either B or C. This type of network may arise in many different topologies as a

subnetwork. Accordingly, difficulties associated with this network can also apply to

many more complex topologies.

X Y

Figure 1:

Let XA, xS, I/S, and _/c, be the packet quantities at a particular fixed time t, at A,

B, or C, and originating from X or Y, as indicated.-At t, each source has one packet to

send. So each of our variables is binary, with XA + XS = YS + YC = 1. Have Vi(zi) be the

cost, per packet, at the single instant t, at router i, when the total number of packets at

that instant on that router is zi. So the total cost incurred by all packets at the time t,

G(_, _, equals XA VA(XA) + (ZV + YS)VS(xB + tlS) + (yc)Vc(!IC).

In an ISPA, X chooses which of ZA or zS = 1 so as to minimize the cost incurred by

X's packet alone, gx(_) -_ XA VA(XA) -I-zBVB(_ B + _lB). (Real-world SPA's typically try

to approximate this by having X choose either A or B according to whether VA (0) or

Vs(ys) is smaller, where those two values can be estimated via pings, for example.) In

doing this the ISPA ignores the tlsVB(zs + _/s) term, i.e., it ignores the "side effects" of

X's decision.

The right thing to do of course is instead have X minimize G(_, I/-'), or more precisely,

the components of G(_, y") that depend on X. Writing it out for this case, X should act

to minimize zA VA(xA) + (XS + ys)Vs(zs + _IB). Due to the constraint that xA + xs = 1,

this means sending down A iff VA(1) < (gs + 1)Vs(ps + 1) - _IsVs(ys), which differs

from the ISPA result in that X is concerned with the full cost of going through router

B, not just the portion of that cost that its packet receives.

In the context of this example, this G-minimizing algorithm constitutes "load-balancing"

(LB). Note that so long as sgn[VA(0)- Vs(ys)- 9BV_(gS)] _ sgn[VA (0)- VS(gB)], even



in the limit of infinitesimally small tratTic (so that XA + xa equals some infinitesimal 5)_

ISPA and LB stilldisagree.

2.3 Braess' Paradox

Braess'paradox [2,7, 6, 14, 16] dramaticallyunderscoresthe inef[iciencyof the [SPA

describedabove. This apparent "paradox_ isperhaps bestillustratedthrough a highway

trafHcexample firstgiven by Bass [2]:There are two highways connecting towns S and

D. The costassociatedwith traversingeitherhighway (eitherinterms of toIls_or delays)

isVIq-V2,as illustratedin Net A of Figure2. So when x = 1 (asingletraveler)foreither

path, totalaccrued costis61 units.Ifon the other hand, sixtravelersare splitequally

among the two paths,they willeach incura costof 83 unitsto get to theirdestinations.

Now, suppose a new highway isbuiltconnectingthe two branches, as shown in Net

B in Figure 2. Further, note that the cost associatedwith taking thishighway isnot

particularlyhigh (infactforany loadhigherthan I,thishighway has a lower cost than

any other highway in the system). The benefitof thishighway is illustratedby the

dramaticallyreduced costincurredby the singletraveler:by taking the short-cut,one

travelercan traversethe network at a costof 31 units(2 VI ÷ V3). Adding a new road

has seemingly reduced the traversalcostdramatically.

V2

Vl

D

½

D

Net A

Figure 2: Hex network with 1/1 -- 10z ;

Net B

V2=50+z ; V3=I0+z.

However considerwhat happens when sixtravelersare on the highways in net B. If

each node usesan ISPA, then atequilibriumeach ofthe threepossiblepaths containstwo

travelers.2 Due to overlapsin the paths however, thisresultsineach travelerincurring

a costof 92 units,which ishigherthan than what they incurredbeforethe new highway

was built.The net effectof adding a new road isto increasethe costincurredby every

traveler.This phenomenon isknown as Braess'paradox.

_We haveinmind heretheNashequilibriumforthisproblem,whereno traveler(orequivalently,no

router) can gain advantage by changing strategies.



2.4 The Suboptimality of Load-Balancing

Asmentionedbefore,LB considersside-effectsof currentroutingdecisionsonothertral_ic
currently being routed. However because it does not consider side-effects of routing

decisions on future traffic, even LB may not optimize global cost averaged across all

time, depending on the details of the system. Here we present an existence proof of this,

by explicitly constructing a situation where conventional LB is suboptimal.

Consider a system with discrete time, in which the node X under consideration must

route one packet to the (fixed) destination at each time step (cf. Section 2.2 above).

Presume further that no traffic enters any of the nodes X sends to except for X. (So

that traffic coming from X is the sole source of any costs associated with X's outbound

links.) Let S(t) be the number of times our node sent a packet down some link A in

the W time steps preceding t, and take s(t) - A, B to mean that the router uses link A

or B, respectively, at time t. Model queue backups and the like by having the cost to

send a packet down link A at time t be CA(S(t)/W), and have the cost for our router

to instead send the packet down link B be CB(1 - S(t)/W), For simplicity we assume

that both CA(.) and Ca(.) are monotonically increasing functions of their arguments.

Restrict attention to nodes that work by having s(t) = A iff S(t) < k for some

real-valued threshold k. The LB algorithm will choose s(t) = A iff CA(S(t)/W) <_

CB(1 - S(t)/W). So the LB algorithm's behavior is indistinguishable from this kind

of threshold algorithm, with k set so that CA(k/W) = CB(1 - k/W). (We implicitly

assume that CA(.) and Ca(.) are chosen so that such a solution exists for I < k < W- 1.)

The question is what k should be to optimize total averaged cost across time, and in

particular if that k is the same as kLB, the k that LB uses.

Now as we go from one time step to the next, the routing decision made W time steps

ago drops out of the computation of S(t), while the routing decision just made is newly

included. In general, S(t + 1) = S(t) + 1 if the router just used A at time t and used link

B at the time W time steps into the past. On the other hand, S(t + 1) = S(t) - 1 if the

router just used B and used A W time steps ago, while S(t + 1) = S(t) if the routing

decision just made is the same as the routing decision W time steps ago. So in general,

S(t) can only change by -1, 0, or +1 as we go from one time step to the next.

Consider cases where 1 < k < W- 1, so that eventually the router must choose

an A, and at some subsequent time t* the router switches from A to B. At that time

s(t'-l) = A and s(t') = B. This implies that S(t'-l) < k,S(t') > k. Define the

value S(t" - 1) as k*. Note that S(t*) = k' + 1, and k- 1 < k" < k.

Now for any time t', if S(t') = k" + 1, s(t' + 1) = B, and the only possible next values

are S(t' + 1) = k* or S(t' + 1) = k" + 1, depending on the old decision s(t - W) that gets

dropped out of the window. Similarly, if S(t') = k °, s(t'+ I) = A, and the only possible

next values are S(t' + 1) = k* or S(t' + 1) = k* + 1, again depending on the old decision

being dropped. So we see that once S(t') 6 {k', k* + 1 }, it stays there forever.
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This means that because of the relationship between k and k °, in any interval of

W consecutive time steps subsequent to t °, the number of packets sent along A by

router X must be E (k - 1, k + 11,2 and therefore the number sent along B must be

E [W - (k+ 1), W - (k - 1)). Each time that a packet is sent along A the cost incurred is

the cost of link A with average traffic level S(t)/W, CA(S(t)/W). Similarly, each time

the link B is chosen, the cost incurred is CB(1 - S(t)/W). Since S(t) E (k*,k ° + 1),

and both Ca(.) and CB(.) are monotonically increasing, the cost for sending the packet

down link A E (CA((k - 1)/W),CA((k + 1)/W], and that for sending it down link B is

contained in [CB(1 - (k + 1)/W), CB(1 - (k - 1)/W)).

Now we know that the choice of A must have average frequency (across all time)

between k*/W and (k ° % 1)/W. Similarly, B will have average frequency between (1 -

(k ° + 1)/W) and 1 - k*/W. Accordingly, the average cost is bounded above by

where the first term provides the maximum possible average cost for using link A, while

the_Jecond term independently provides the maximum possible average cost for using

link B. (Note that the actual cost will be lower sincethe two frequencies in this bound,

one for A and one for B, cannot both have the values indicated.) Because k - 1 < k* _( k

and since 1 - _ -- 1 + _ - Lt_-_, our upper bound is itself bounded above by

w + 1+ w cB 1+ w w " (2)

The optimal k will result in an average cost lower than the minimum over all k of the

upper bound on average cost, given in Equation 2. So the average cost for the optimal

k is bounded above by the minimum over k of this upper bound. Lable this argmin of

Equation 2 k'.

Since other valuesof k besideskLB resultin behaviorequivalentto LB, itdoes not

sufficeto simply testifk'--kLB. Insteadletus evaluatesome lowerbounds in a simiolar

fashion to how we evaluated upper bounds.

above, the average cost isbounded below by:

1

Using the average frequenciesdiscussed

w) CB(1 kw1 ) , (3)

where the first term provides the minimum possible average cost for using link A, while

the second term provides the minimum possible average cost for using link B. Again,

because k - 1 < k* < k, the term is Equation 3 is further bounded below by

2 k._wI)CB( 1 2 k-1)

In particular this bound holds for the average cost of the LB algorithm:

kLB--1cA(kLvl) + (21 kLB--1)(2C. 1 kL.--1) (5)W -- W W W" '

aNote that it is possible to send k + I packets along A, but not k - l packets.



where as beforekLB satisfiesCA(kLB/W) - CB(I - kLB/W).

By appropriatechoiceof CA(.) and C_(.), we can ensure that the lower bound on

the cost with the LB algorithm (Equation 5 evaluated with k - kLB) ishigher than

the upper bound on the average costincurredby the optimal algorithm (the minimum

over k of Equation 2).4That is,the bestpossibleaveragecostachieveby load balancing

willbe worse than the worst averagecost that could arisethrough the optimal routing

strategy.This establishesthat LB does not engage inoptimal routing.

3 COIN-based Routing

One common solutionto thesetype ofside-effectproblems isto have particularcompo-

nents of the network (e.g.,a "network manager" [15])dictatecertainchoicesto other

nodes. This solutioncan incurmajor brittlenessand scalingproblems however. Another

kind of approach, which avoidsthe problems of a centralizedmanager, isto provide the

nodes with extra incentivesthatcan inducethem to take actionsthatare undesirableto

them from a strictSPA sense.Such incentivecan be in the form of "taxes"or "tolls"

added to the costsassociatedwith traversingparticularlinksto discourage the use of

those links.Such schemes in which tollsare superimposed on the nodes' goals are a

specialcaseof the more generalapproach of replacingthe goalofeach node with a new

goal. These new goals are specificallytailoredso that ifthey are collectivelymet the

system maximizes throughput, with no additionala prioriconcern builtintoa particular

node's goal forthe SPA-type cost incurredby that node's packets. Intuitively,in this

approach, we provide each node with a goal that is "alignedwith the globalobjective,

independent of'thatgoal'srelationto the SPA-type costincurredby the trafficrouted

by that node.

In thissection,we summarize the theory ofsuch systems,which are calledCollective

Intelligences[24,22]. We then use that theory to presentan algorithm that only uses

limitedknowledge of the stateof the network (inparticularknowledge that isreadily

availableto routersin common realdata networks) to make routingdecisions.At each

router,thisalgorithmusesa Memory Based (MB) machine learningalgorithmto estimate

the value that a privateutility(providedby the COIN formalism) would take on under

the differentcandidate routing decisions.It then makes routing decisionsaimed at

maximizing that utility.(We callthisalgorithm an MB-COIN.)

4Forexample,forCA(X) = z2 and CB(z) ----z, balancingthe loadson A and B m setting

CA(S(t)/W) ---Cs(1-S(t)/W) -- results in (S(t)/W) 2 = 1-S(t)/W, leading to kL_/W -_ _ = .618.

For W = 1000, the associated )owerbound on average cost (Equation 5) is .817(.617) 2 + (.998 - .617) 2 --

.380. On the other hand, with CA and Ce given as above, Eq 2 is (kw--_)3+ (1 + T_ - "_TL)_. Differenti-

ating with respect to k and setting the result to zero leads to _ -_ _A _ _ + _. For a window

size of W" -- 1000, this yields k'/W =- .548, a different result than kLs. Plugging _¢_ Equation 2, the

upper _und on the performance with k' is (.549) 3 + (1.002 - .549) 2 -- .371, which is less than .380.

9



3.1 COIN Formalism

In thispaper we considersystems thatconsistofa setof nodes,connected in a network,

evolving acrossa set of discrete,consecutivetime steps,t E _0,I,...}.Without lossof

generality,we letallrelevantcharacteristicsofa node _ at time _-- includingitsinternal

parameters at that time as wellas itsexternallyvisibleactions-- be encapsulatedby a

Euclidean vector_,t" We callthisthe "state"of node r/attime t,and let_ be the state

of allnode acrossalltime.

World utility,G(_), isa functionof the stateof allnodes acrossalltime. When

rlis an agent that uses a machine learning(ML) algorithm to "try to increase"its

private utility,we write that privateutilityas %(_). We assume that _ encompasses

allphysicallyrelevantvariables,so that the dynamics of the system isdeterministic

(though ofcourse impreciselyknown to anyone tryingto controlthe system). Note that

thismeans thatallcharacteristicsofan agentT/att- 0 thataffectsthe ensuingdynamics

of the system must be included in _-_,0"This includesin particularthe algorithmic

specificationof itsprivateutility(typicallyinthe physicalform ofsome computer code)

ii"ithas one,

As elaboratedbelow,the mathematics isgeneralizedbeyond ML-based agentsthrough

an artificialconstruct: personal utilities_g_(_)). Our goal as COIN designersis

to maximize world utilitythrough the proper selectionof personal utilityfunctions.

Intuitively,the ideaisto choose personalutilitiesthat are alignedwith the world utility,

and thatalsohave the property that itisrelativelyeasy forus to configureeach node so

that the associatedpersonal utilityachievesa largevalue.(In particular,forML-based

agent nodes, itisoften possibleto induce a largevalue of personal utilitysimply by

assigningthat utilityto the agent as itsprivateutility,so that the agent then ensures

the desiredlargevalue.)In forthispaper,we restrictattentionto utilitiesof the form

_t Rt(_,t)for reward functions Rt. In particular,as shown below, overallnetwork

throughput isexpressiblethisway.

We need a formal definitionof the concept of having personal utilitiesbe "aligned"

with G. In thisregard,considersystems where theworld utilityisthe sum ofthe personal

utilitiesof the individualnodes. This might seem a reasonablecandidateforan example

of "aligned"utilities.However such systems are examples of the more generalclassof

systems that are "weakly trivial".It iswell-known that in weakly trivialsystems each

individualagent greedilytryingto maximize itsown utilitycan lead to the tragedy of

the commons _ and actuallyminimize G. Evidently,having G = _ g_ isnot a formal

instanceof "aligned"utilities;some alternativeformalizationisneeded.5

A more carefulalternativeformalizationofthe notionofalignedutilitiesisthe concept

of "factored"systems. A system isfactored when the followingholds foreach agent T}

SNote that in the simple network discussed in Section 2.1, the utilitiesare weakly trivial,since

G(_,_) = gx'(_) + g_(Y-'). This provides another perspective on the suboptimality of ISPA in that

network,

l0



individually: A change at time 0 to the state of rl alone results in an increase for g,7(_)

if and only if it results in an increase for G(_().

For a factored system, the side effects of a change to rl's t = 0 state that increases its

personal utility cannot decrease world utility. In game-theoretic terms, optimal global

behavior corresponds to the agents' reaching a personal utility Nash equilibrium for such

systems [10]. In this sense, there can be no TOC for a factored system. As a trivial

example, a system is factored for gn = G Vrl.

Define the (t = 0) effect set of node r/at _(, C,_//(_(), as the set of all components _-_',t

which under the forward dynamics of the system have non-zero derivative with respect

to the state of node 7?at t = 0. Intuitively, rl's effect set is the set of all components _Ln',t
which would be affected by a change in the state of node r/at time 0. (They may or may

not be affected by changes in the t = 0 states of the other nodes.)

Next for any set a of components (_f, t), define CLa(_) as the "virtual" vector formed

by clamping the a-components of _ to an arbitrary fixed value. (In this paper, we take

that fixed value to be {_ for all components listed in a.) The value of the effect set

wofiderful life utility (WLU for short) for node rl is defined as:

WLU (g) - (6)

In other words, the WLU for the effect set of node r1 is the difference between the actual

world utility and the virtual world utility where all node-time pairs that are affected by

node r/have been clamped to a zero state while the rest of _ is left unchanged.

Since we are clamping to 0, we can view rl'S effect set WLU as analogous to the change

in world utility that would have arisen if node 7/"had never existed". (Hence the name of

this utility - cf. the Frank Capra movie.) Note however, that CL is a purely "fictional",

counter-factual operation, in the sense that it produces a new _ without taking into

account the system's dynamics. The sequence of states the node ri is clamped to in the

definition of the WLU need not be consistent with the dynamical laws embodied in C.

This dynamics-independence is a crucial strength of the WLU. It means that to evaluate

the WLU we do not try to infer how the system would have evolved if node rfs state were

set to 0 at time 0 and the system evolved from there. So long as we know _ extending

over all time, and so long as we know G, we know the value of WLU.

If our system is factored with respect to personal utilities {g_}, then we want each

_-_,0 to be a state that induces as high a value of personal utility as possible (given the

initial states of the other nodes). Assuming 1/ is ML-based and able to achieve large

values of most any private utility specified in _,0' we would likely induce such a state

of high personal utility if r/'s private utility were set to that associated personal utility:

"fl? _ _¢h0;pri_te--utility _--- g_" Enforcing this equality, our problem becomes determining

what {Tn} the agents will best be able to maximize while also causing dynamics that is

factored with respect to the {7_}-

As mentioned above, regardless of the system dynamics, having % = G Vrl means the

P
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system isfactored.Itisalsotrue that regardlessof the dynamics, 77 = WLUc,//Vr/is

a factoredsystem (for9_ - %) (proofin 0)' Which of thesetwo choicesof {%1 should

we use?

To answer this,note that sinceeach agent isoperating in a largesystem, itmay

experiencedifficultydiscerningthe effectsof itsactionson G when G sensitivelydepends

on allthe myriad components ofthesystem. Thereforeeach r/may have difficultylearning

how to achieve high % when % = G. (In particular,in the routingproblem, having

% - G means providingeach routerwith the fullthroughput of the entirenetwork.

This is usuallyinfeasiblein practice. Even ifit weren't though, using these private

utilitieswould mean that the routersfacea very dii_culttask in tryingto discernthe

effectof theiractionson the overallthroughput, and thereforewould likelybe unable

to learn theirbest routingstrategies.)This problem can be obviated using effectset

WLU as the privateutility,sincethe subtractionofthe clamped term removes much of

the "noise"of the activityof other agents,leavingonly the underlying "signal"of how

the agent inquestionaffectsthe utility.(This reasoningisformalizedas the concept of

'llea_rnability"in [22].Accordingly,one would expect that usingWLU's should resultin

betterperformance, than having % = G Vr/.In practice,we willoftenonly be able to

estimatethe "primary",most prominent portionofthe effectset.However assuming that

the associatedWLU iscloseenough to being factored,we would expect the advantage

inlearnabilitywith such a WLU to stillresultinbetterperformance than would using

% ----G Vr}. (See [24, 22].)

_', a-

3.2 Model Description

To apply the COIN formalism to a network routingmodel, we must formallyidentify

the components of thatmodel as deterministicallyevolvingelements ofvectors_. In the

model used in thispaper, at any time step t,alltrafficat a routerr isa real-valued

number together with an ultimatedestinationtag,d. At each time step,each router

sums alltrafficreceivedby r at that time step isused to determine r's_instantaneous

l_ad". That load isgiven by zr(t)- _, zr,d,e(t)where rt isa firststop on a path

from router r to d, and Xr,d,r,(t)isthe totaltrafficat time t going from r towards d

with a firststop at rq After computing itsinstantaneousload at time t,the router

then sends itsload to downstream routersand the cyclerepeats itself,untilalltraffic

reachesitsdestinations.(So forexample, sinceno packets are dropped in our model,

Z,, - I) = St,, X,.d,,,,(t).)

In a real network, the cost of traversing a router does not change dramatically from

one packet to the next as these costs are mainly determined by the state of the queues

at the router. To simulate this effect, we use cumulative values of the load at a router

rather than instanteneousload to determine the costof traversingthat router. More

precisely,we use its"windowed load",which isa running averageof that router'sload

valueovera window ofthe previousW timesteps,Zr, where Zr(t) _;, t= ]E,=,-w+l
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Using such a window ensuresthat the costsacrossnodes change over a time frame that

is largerthan the individualrouting decisions.The windowed load is the argument

of the load-to-costfunction,V(.),which provides the costaccrued at thistimestep by

each packet traversingthisrouterat thistimestep.That is,at time t,the costforeach

packet to traverserouterr isgiven by V(Zr(t)).(Note that inour model, the costsare

accrued at the routers,not the links.)Differentroutershave differentV(.),to reflectthe

factthat realnetworks have differencesin routersoftwareand hardware (responsetime,

queue length,processingspeed etc).Note thatwith thisnotation,world utilityisgiven

by G = Et Er zr(t) V,(Z_(t)).

At time step t, ISPA has access to all the windowed loads at time step t - 1 (i.e.,

it has access to Zr, (t - 1) ¥C), and assumes that those values will remain the same at

time t. Note that for large window sizes, this assumption should be arbitrarily accurate.

Based on those values, in ISPA, each router sends packets along the path that it surmises

will minimize the costs accumulated by its packets. In this model, all of the dynamics

is encapsulated in the values of Xr,d,r'(t) Vr, d, r', t. Accordingly, _ must specify those

values. For routing based on ML agents, other variables must also be included in _, to

capture the internal parameters used by those agents to make their routing decisions.

3.3 COIN Routing

Based on the COIN formalism presentedin Section3.1 and the model describedabove,

we now presentthe COIN-based routingalgorithms.

First,we must define_ precisely.We identifya node as a router-destinationpair.

The stateof node r/= r - d at time t isthe Euclidean vectorofthe valuesXr,d,r'(t)Vr',

togetherwith an internalparameters routerr might use to routetrafficdestinedford.

To compute the WLU fora node we must estimatethe associatedprimary effectset.In

the resultspresentedhere,the effectsetofa node isestimatedto be allnodes that share

the same destination.Using thisestimate for the effectset,the WLU for a node r/is

given by the differencebetween the totalcostaccrued by allnodes in the network and

the cost accrued by nodes when allnodes sharing r/'sdestinationare "erased." More

precisely,any node T/thathas a destinationd willhave the followingeffectsetWLU, gT:

9,(£)= -

= - Z,,,d,(t))
t,r* t,r*,d*_d _ _d

where Zr,d(t)isthe window load at routerr at time tthat has ultimatedestinationd,so
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that _'_d Zr,d(t) = Zr(t), and similarly for Zrd(t). Notice that each term in the expression

in Equation 7 can be computed at each router r' separately, from information available

to that router. Subsequently those terms can be propagated through the network by to

r/, much the same way as routing tables updates axe propagated.

The starting point of the COIN-based routing algorithm is the collection of the data

that is to be used in the process of making routing decisions. In our experiments that data

was collected during the initial running of an SPA. In this stage, the routing decisions

are made using the SPA, but the resulting actions are "scored" using the WLU given in

Equation 7. s This training set then consists of loads on outgoing links as inputs and

resulting WLU values as outputs for each destination. After sufficient data is collected

using the ISPA, the system switches to using the COIN algorithm. At this stage, the

memory based COIN (MB-COIN) routes packets along the path that in its estimate

would provide the best WLU.

More precisely, the router uses a single nearest neighbor algorithm -- which simply

assigns the inputs to the class to which its "nearest" neighbor in input space belongs

aS its learner. 7 This process consists of the learner finding the state of the network

(loads on outgoing links) closest to that which would result from each potential routing

decision. Then the learner assigns the WLU associated with those states as estimates

for the WLU that would result from said routing decisions. Finally, the router sends the

packets along the path which has the highest estimated WLU value.

Note that the routers are trying to estimate how the various _routing decisions (loads

at individual time steps) will affect their WLU values (based on loads summed over a

window ). In the limit of a large window, this becomes a differential operation, and

as such can be reduced to derivative balancing over personal utility functions. In these

experiments we used routing decisions based on such estimates to help the MB-COIN.

These valuesprovide an actual WLU value (analogousto the ideal.SPA) and can be

used to "steer"the learnerin the rightdirection.Because they are based on the actual

WLU derivatives,we willcallthem FullKnowledge COIN (FK-COIN) values. The

steeringparameter determines how oftenthe routingdecisionisbased on the MB-COIN

as opposed to the FK-COIN.

4 SIMULATION RESULTS

Based on the model and routingalgorithmsdiscussedabove,we have performed simula-

tionsto compare the performance of ISPA and MB-COIN acrossa varietyof networks,

6We areusingtheSPA asthestartingpoint,sinceitmostlikelywillbethealgorithmrunningpriorto

theCOIN algorithm.Alternatelyonecancollectdatabyallowingtherouterstomake random decision,

ordecisionsthat"sweep"thepossiblesetofactions.

TThisisa verysimplelearning"algorithm,and we useitheretoshow thefeasibilityofa COIN based

routingalgorithm.The performanceoftheMB-COIN canbe improvedifmore sophisticatedlearning

algorithms (e.g., Q-learning [20, 21]) are used.
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varying in size from five to eighteen nodes. In all cases traffic was inserted into the net-

work deterministically at the sources. The results we report are averaged over 20 runs,

but we do not report error bars as they are all lower than 0.05.

In particular in Sections 4.1 - 4.4 we analyze traffic patterns over four networks where

ISPA suffers from the Braess' paradox, while the routing scheme highlighted in Section

3.3 does not. Then in Section 4.5 we discuss the effect of the "steering" parameter which

determines the amount of information to which the the COIN algorithm has access, on

the performance of COIN routing, s

4.1 Bootes Network

The first network we will investigate is shown in Figure 3. It is by many accounts a trivial

network, and in Net A, in particular, the sources do not have any choices to make. At

each time step, each source sends its load (given in the Table 1) to the destination.

The interesting phenomena occur when source $1 is given a choice in its routing by

the addition of the new router. Eftlcient usage of this routing option can lead better

thr0ughput for the network, while poor usage can have deleterious effects.

D D

vl 1/1

Net A Net B

Figure 3: Bootes Network

' Tables 1-2 show the results for both ISPA and MB-COIN on two variations of the

network shown in Figure 3. In both tables, the loads show the packets injected to the

network at $1 and $2 respectively, at each time step.

The MB-COIN results are identical to the ISPA results in the absence of the additional

link. The Braess' paradox is apparent in ISPA where the addition of the new link

degrades the performance of the ISPA in all cases. The MB-COIN on the other hand

shows no ill-effect from the addition of the new link. In particular, with both sets of cost

functions, the MB-COIN either uses the additional link efficiently or chooses to ignore

it, thereby avoiding the Braess' paradox. Adding the new link causes a degradation of

the performance by as much as 30 % (load -- 2) for the ISPA, whereas for the same load

MB-COIN performance improves by 7 %.

Sln Sections 4.1 - 4.4, the steer parameter is set at 0.5.

15



This networkis particularly interestingbecause of its simplicity, and demonstrates

that the Braess' paradox is not restricted to complex situations. Here a simple two

source, one destination network suffers from this phenomenon when a link that allows

decision making is added.

Table 1: Average Per Packet Cost for BOOTES2 Network with (Net B) and without

(Net A) added link for V1 = 10 + log(1 + x) ; V_ -- 4x 2 ; V3 = log(1 + x) .

Load I Net I ISPA I MB-COIN

1,1

B

2,1' A

B

2,2 A

B

4,2 A

B

6.35 6,35

8.35 5.93

8.07 8.07

10.40 7.88

9.55 9.55

10.88 9.71

10.41 10.41

11.55 10.41

Table 2: Average Per Packet Cost forBOOTES4 Network with (Net B) and without

(Net A) added link for Vl = 50 + log(1 + x) ; V2 = 10z ; Vs = log(1 + x) .

Load

1,1 A 30.35

B 20.35

2,2 A 35.55

B 40.55

4,2 A 41.07

B 50.47

6,3 A 44.63

B 51.40

MB-COIN

30.35

20.35

35.55

34.99

41.07

44.13

44.63

44.63

4.2 Hex Network

In this section we revisit the network first discussed in Section 2.1 (sho_vn in Figure 2).

In Table 3 we give full results for the cost functions discussed in that section. We then

use load-to-cost functions which are qualitatively similar to those used in Section 2.1, but

incorporate non-linearities that better represent router characteristics. That load-to-cost

function and associated results are reported in Table 4.

This network demonstrates that while the addition of a new link may be beneficial

in low traffic cases, it leads to bottlenecks in higher traffic regimes. For ISPA although

the per packet cost for loads of 1 and 2 drop drastically when the new link is added, the
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Table 3: Average Per Packet Cost forHEX3 Network with (Net B) and without (Net

A) added linkforVl=50+x; V2=10x; V3--10+x.

Load] Net I 1SPAI MB-COXN
I A 55.50 55.56

B 31.00 31.00

2 A 61.00 61.10

B 52.00 51.69

3 A 66.50 66.65

B 73.00 64.45

4 A 72.00 72.25

B 87.37 73.41

Table 4" Average Per Packet Cost forHEX2 Network with (Net B) and without (Net

A) added linkfor_ = 50 + log(1+ x) ; V2 = 10x ; V3 = log(1+ x).

' Load INet [ISPA [MB-COIN

i A

B

2 A

B

3 A

B

4 A

B

55.41 55.44

20.69 20.69

60.69 60.80

41.10 41.10

65.92 66.10

61.39 59.19

71.10 71.41

81.61 69.88

per packet costincreasesforhigherloads.The MB-COIN on the other usesthe new link

ei_ciently.Notice that the MB-COIN's performance isslightlylower than that of the

ISPA in the absence of the additionallink.This iscaused by the MB-COIN having to

de a learnerto estimate the WLU valuesforpotentialactionswhereas the ISPA simply

has directaccessto allthe informationitneeds (costsat each link).

4.3 Butterfly Network

The next network we investigateisshown in Figure 4. Itisan extensionto the simple

network discussed in Section 4.1. We now have doubled the sizeof the network and

have threesources that have to routetheirpackets to two destinations.Initiallythe two

halvesofthe network have minimal contact,but with the additionof the extra linktwo

sourcesshare a common routeron theirpotentialshortestpath.

Table 5 presentstwo setsof results:firstwe presentresultsforuniform trai_icthrough

allthree sources,and then resultsforasymmetric traffic.For the firstcase,the Braess'
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4.4 Ray Network

the final network we investigate is a larger network where the number of routers with

decision making potential is significantly higher than in the previous networks. Figure 5

shows the initial network (Net A) and the "augmented" network (Net B), where new

links have been added. The original network has relatively few choices for the touters, as

packets are directed toward their destinations along "conduits." New links are added to

provide more choices (crossing patterns) in case certain conduits experience large costs.

Net A Net B

Figure 5: Ray network with V1 = 10 + log(1 + z) ; V2 = 4z _ ; V3 = log(1 + z)

Table 6: Average Per Packet Cost forRAY1 Network with (Net B) and without (Net

A) added linkfor VI = 50 + log(1+ z) ; P_ = 10z ; V3 = 10 + log(1+ z).

The "Load" column shows the packet insertionratesat sources $I and $2

respectively.

, Load I Net [ISPA [MB-COIN

2,2 A 143.6 143'X

B 124.4 126.9

3,3 A 154.6 154.9

B 165.5 151.0

4,4 A 165.4  66.o
B 197.7 165.6

6,6 A 186.7 187.4

B 205.1 191.6

Table 6 shows the simulationresultsforthesenetworks.At low load levelsboth the

ISPA and the MB-COIN use the new linksalthough the MB-COIN performs slightly

worse. This ismainly caused by the dii_icultyencounteredby the simplelearner(single
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nearest neighbor algorithm) in quickly learning the traffic patterns in this large network.

The discrepancies though, are minor and can be readily corrected by using more powerful

learners. Note however, that the MB-COIN still avoids the Braess' paradox in this

network in all cases but the highest traffic regime. However, even there, the effect is

significantly milder than that encountered by the ISPA.

4.5 Steering the MB-COIN

The final aspect of the COIN based routing we investigate is the impact of the switch-

ing parameter discussed in Section 3.3. This parameter both controls the amount of

exploration the algorithm performs and determines the "faithfulness" of the MB-COIN

to the the derivative based full knowledge COIN (FK-COIN). In Figure 6 we also pro-

vide results based solely on the FK-COIN algorithm, which provides a bound on the

performance of the MB-COIN.

For HEX (Figure 6(a)), the worst setting for MB COIN, which corresponds to no

steering, is comparable to ISPA, while with high steering (0.5) the results are similar

to that of the FK-COIN. This figure dramatically demonstrates the strength of this

algorithm: as the learner has more information to work with, it bridges the gap between

a suboptimal algorithm susceptible to Braess' paradox to one which efficiently avoids it.

For RAY (Figure 6(b)), the tradeoff is more critical. Without steering, the MB-COIN

performs poorly in this network. This is not surprising in that because there are many

choices that affect the outcome, the simple memory based learner needs proper "seeding"

to be able to perform well. Note that with the addition of steering the MB-COIN quickly

outperforms the ISPA.

Finally, for both Butterfly and Bootes networks (Figures 6(c) - 6(d)) the MB-COIN

needs very little steering to perform well. Although for Butterfly, the performance of

MB-COIN improves slightly with more information, it is significantly better than the

ISPA across the board.

5 CONCLUSION

Effective routing in a network is a fundamental problem in many fields, including data the

data communications and transportation. Shortest path algorithms provide an elegant

solution to this problem, but under certain circumstances suffer from less than desirable

effects. On such effect is Braess' paradox where increased capacity results in lower overall

throughput.

Collective Intelligence is a novel way of addressing distributed control problems. In a

COIN, the central issue is in determining the personal objectives of the components such

that their greedy pursuit of those goals leads to a globally desirable solution. We have

summarized COIN theory and derived a routing algorithm based on that theory. In our
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vide results based solely on the FK-COIN algorithm, which provides a bound on the

performance of the MB-COIN.

For HEX (Figure 6(a)), the worst setting for MB COIN, which corresponds to no

steering, is comparable to ISPA, while with high steering (0.5) the results are similar

to that of the FK-COIN. This figure dramatically demonstrates the strength of this

algorithm: as the learner has more information to work with, it bridges the gap between

a suboptimal algorithm susceptible to Braess' paradox to one which efficiently avoids it.

For RAY (Figure 6(b)), the tradeoff is more critical. Without steering, the MB-COIN

performs poorly in this network. This is not surprising in that because there are many

choices that affect the outcome, the simple memory based learner needs proper "seeding"

to be able to perform well. Note that with the addition of steering the MB-COIN quickly

outperforms the ISPA.

Finally, for both Butterfly and Bootes networks (Figures 6(c) - 6(d)) the MB-COIN

needs very little steering to perform well. Although for Butterfly, the performance of

MB-COIN improves slightly with more information, it is significantly better than the

ISPA acrossthe board.

5 CONCLUSION

Effective routing in a network is a fundamental problem in many fields, including data the

data communications and transportation. Shortest path algorithms provide an elegant

solution to this problem, but under certain circumstances suffer from less than desirable

effects. On such effect is Braess' paradox where increased capacity results in lower overall

throughput.

Collective Intelligence is a novel way of addressing distributed control problems. In a

COIN, the central issue is in determining the personal objectives of the components such

that their greedy pursuit of those goals leads to a globally desirable solution. We have

summarized COIN theory and derived a routing algorithm based on that theory. In our
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Figure 6: Impact of switching.

s_mulations, the ISPA provided average costs as much as 32 % higher than the COIN-

based algorithm. Furthermore the COIN-based algorithm avoided the Braess' paradox

that seriously deteriorated the performance of the ISPA.

In the work presented here, the COIN-based algorithm had to overcome severe limita-

tions. Firstly, the selection of the primary effect set was almost arbitrary, and therefore

rendered the learners tasks more difficult than it needed to be. Secondly, the learners

themselves were particularly simple-minded, and therefore were not able effectively max-

imize the gains. That a COIN-based router with such serious limitations outperformed

an ideal shortest path algorithm demonstrates the strength of the proposed method. We

are currently investigating novel utilities that are more "learnable" for the routers as well

as expand the simulations to larger networks using a commercial event driven simulator.
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